330 research outputs found

    Diagnostics for spectropolarimetry and magnetography

    Full text link
    An assessment on the capabilities of modern spectropolarimeters and magnetographs is in order since most of our astrophysical results rely upon the accuracy of the instrumentation and on the sensitivity of the observables to variations of the sought physical parameters. A contribution to such an assessment will be presented in this talk where emphasis will be made on the use of the so-called response functions to gauge the probing capabilities of spectral lines and on an analytical approach to estimate the uncertainties in the results in terms of instrumental effects. The Imaging Magnetograph eXperiment (IMaX) and the Polarimetric and Helioseismic Imager (PHI) will be used as study cases.Comment: To be published in "Physics of Sun and Star Spots", Proceedings of IAU Symp. 273, D.P. Choudhary & A.C. Cadavid (eds.), Cambridge, UK: Cambridge University Pres

    Magnetic loops in the quiet Sun

    Full text link
    We investigate the fine structure of magnetic fields in the atmosphere of the quiet Sun. We use photospheric magnetic field measurements from {\sc Sunrise}/IMaX with unprecedented spatial resolution to extrapolate the photospheric magnetic field into higher layers of the solar atmosphere with the help of potential and force-free extrapolation techniques. We find that most magnetic loops which reach into the chromosphere or higher have one foot point in relatively strong magnetic field regions in the photosphere. 9191% of the magnetic energy in the mid chromosphere (at a height of 1 Mm) is in field lines, whose stronger foot point has a strength of more than 300 G, i.e. above the equipartition field strength with convection. The loops reaching into the chromosphere and corona are also found to be asymmetric in the sense that the weaker foot point has a strength B<300B < 300 G and is located in the internetwork. Such loops are expected to be strongly dynamic and have short lifetimes, as dictated by the properties of the internetwork fields.Comment: accepted for ApJL Sunrise special issue, 8 Pages, 4 Figure

    Temporal relation between quiet-Sun transverse fields and the strong flows detected by IMaX/SUNRISE

    Full text link
    Localized strongly Doppler-shifted Stokes V signals were detected by IMaX/SUNRISE. These signals are related to newly emerged magnetic loops that are observed as linear polarization features. We aim to set constraints on the physical nature and causes of these highly Doppler-shifted signals. In particular, the temporal relation between the appearance of transverse fields and the strong Doppler shifts is analyzed in some detail. We calculated the time difference between the appearance of the strong flows and the linear polarization. We also obtained the distances from the center of various features to the nearest neutral lines and whether they overlap or not. These distances were compared with those obtained from randomly distributed points on observed magnetograms. Various cases of strong flows are described in some detail. The linear polarization signals precede the appearance of the strong flows by on average 84+-11 seconds. The strongly Doppler-shifted signals are closer (0.19") to magnetic neutral lines than randomly distributed points (0.5"). Eighty percent of the strongly Doppler-shifted signals are close to a neutral line that is located between the emerging field and pre-existing fields. That the remaining 20% do not show a close-by pre-existing field could be explained by a lack of sensitivity or an unfavorable geometry of the pre-existing field, for instance, a canopy-like structure. Transverse fields occurred before the observation of the strong Doppler shifts. The process is most naturally explained as the emergence of a granular-scale loop that first gives rise to the linear polarization signals, interacts with pre-existing fields (generating new neutral line configurations), and produces the observed strong flows. This explanation is indicative of frequent small-scale reconnection events in the quiet Sun.Comment: 11 pages, 8 figure

    Influence of phase-diversity image reconstruction techniques on circular polarization asymmetries

    Full text link
    Full Stokes filter-polarimeters are key instruments for investigating the rapid evolution of magnetic structures on the solar surface. To this end, the image quality is routinely improved using a-posteriori image reconstruction methods. We analyze the robustness of circular polarization asymmetries to phase-diversity image reconstruction techniques. We use snapshots of magneto-hydrodynamical simulations carried out with different initial conditions to synthesize spectra of the magnetically sensitive Fe I line at 5250.2 A. We degrade the synthetic profiles spatially and spectrally to simulate observations with the IMaX full Stokes filter-polarimeter. We also simulate the focused/defocused pairs of images used by the phase-diversity algorithm for reconstruction and the polarimetric modulation scheme. We assume that standard optimization methods are able to infer the projection of the wavefront on the Zernike polynomials with 10% precision. We also consider the less favorable case of 25% precision. We obtain reconstructed monochromatic modulated images that are later demodulated and compared with the original maps. Although asymmetries are often difficult to define in the quiet Sun due to the complexity of the Stokes V profiles, we show how asymmetries are degraded with spatial and spectral smearing. The results indicate that, although image reconstruction techniques reduce the spatial smearing, they can modify the asymmetries of the profiles, mainly caused by the appearance of spatially-correlated noise.Comment: 10 pages, accepted for publication in A&

    Properties of sunspots in cycle 23: I. Dependence of brightness on sunspot size and cycle phase

    Full text link
    In this paper we investigate the dependence of umbral core brightness, as well as the mean umbral and penumbral brightness on the phase of the solar cycle and on the size of the sunspot. Albregtsen & Maltby (1978) reported an increase in umbral core brightness from the early to the late phase of solar cycle from the analysis of 13 sunspots which cover solar cycles 20 and 21. Here we revisit this topic by analysing continuum images of more than 160 sunspots observed by the MDI instrument on board the SOHO spacecraft for the period between 1998 March to 2004 March, i.e. a sizable part of solar cycle 23. The advantage of this data set is its homogeneity, with no seeing fluctuations. A careful stray light correction, which is validated using the Mercury transit of 7th May, 2003, is carried out before the umbral and penumbral intensities are determined. The influence of the Zeeman splitting of the nearby NiI spectral line on the measured 'continuum' intensity is also taken into account. We did not observe any significant variation in umbral core, mean umbral and mean penumbral intensities with solar cycle, which is in contrast to earlier findings for the umbral core intensity. We do find a strong and clear dependence of the umbral brightness on sunspot size, however. The penumbral brightness also displays a weak dependence. The brightness-radius relationship has numerous implications, some of which, such as those for the energy transport in umbrae, are pointed out.Comment: 16 pages, 21 postscript figures, accepted for publication in A&

    Where the granular flows bend

    Full text link
    Based on IMaX/Sunrise data, we report on a previously undetected phenomenon in solar granulation. We show that in a very narrow region separating granules and intergranular lanes the spectral line width of the Fe I 5250.2 A line becomes extremely small. We offer an explanation of this observation with the help of magneto-convection simulations. These regions with extremely small line widths correspond to the places where the granular flows bend from mainly upflow in granules to downflow in intergranular lanes. We show that the resolution and image stability achieved by IMaX/Sunrise are important requisites to detect this interesting phenomenon.Comment: Accepted for the Sunrise Special Issue of ApJ

    Supersonic Evershed flow outside Sunspots

    Full text link
    We report on the discovery of mostly horizontal field channels just outside sunspot penumbrae (in the so-called `moat' region) that are seen to sustain supersonic flows (line-of-sight component of 6 km s{-1}). The spectral signature of these supersonic flows corresponds to circular polarization profiles with an additional, satellite, third lobe of the same sign as the parent sunspot' Stokes V blue lobe, for both downflows and upflows. This is consistent with an outward directed flow that we interpret as the continuation of the magnetized Evershed flow outside sunspots at supersonic speeds. In Stokes Q and U, a clear signature of a transverse field connecting the two flow streams is observed. Such an easily detectable spectral signature should allow for a clear identification of these horizontal field channels in other spectropolarimetric sunspot data. For the spot analyzed in this paper, a total of 5 channels with this spectral signature have been unambiguously found
    • …
    corecore